Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(10): e1010586, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36251703

RESUMO

ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.


Assuntos
Citoesqueleto , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Polimerização , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Trifosfato de Adenosina/metabolismo , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...